Methotrexate combined with methylprednisolone for the recovery of motor function and differential gene expression in rats with spinal cord injury

نویسندگان

  • Jian-Tao Liu
  • Si Zhang
  • Bing Gu
  • Hua-Nan Li
  • Shuo-Yu Wang
  • Shui-Yin Zhang
چکیده

Methylprednisolone is a commonly used drug for the treatment of spinal cord injury, but high doses of methylprednisolone can increase the incidence of infectious diseases. Methotrexate has anti-inflammatory activity and immunosuppressive effects, and can reduce inflammation after spinal cord injury. To analyze gene expression changes and the molecular mechanism of methotrexate combined with methylprednisolone in the treatment of spinal cord injury, a rat model of spinal cord contusion was prepared using the PinPoint™ precision cortical impactor technique. Rats were injected with methylprednisolone 30 mg/kg 30 minutes after injury, and then subcutaneously injected with 0.3 mg/kg methotrexate 1 day after injury, once a day, for 2 weeks. TreadScan gait analysis found that at 4 and 8 weeks after injury, methotrexate combined with methylprednisolone significantly improved hind limb swing time, stride time, minimum longitudinal deviation, instant speed, footprint area and regularity index. Solexa high-throughput sequencing was used to analyze differential gene expression. Compared with methylprednisolone alone, differential expression of 316 genes was detected in injured spinal cord treated with methotrexate and methylprednisolone. The 275 up-regulated genes were mainly related to nerve recovery, anti-oxidative, anti-inflammatory and anti-apoptotic functions, while 41 down-regulated genes were mainly related to proinflammatory and pro-apoptotic functions. These results indicate that methotrexate combined with methylprednisolone exhibited better effects on inhibiting the activity of inflammatory cytokines and enhancing antioxidant and anti-apoptotic effects and thereby produced stronger neuroprotective effects than methotrexate alone. The 316 differentially expressed genes play an important role in the above processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury

Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...

متن کامل

Functional recovery assessment of spinal cord contusion model in male rats without therapeutic interventions

Introduction: Spinal cord injury (SCI) is one of the most serious clinical diseases, which not only affects the patient's physical and mental status, but its effects will be spread to family and community. After severe spinal cord injury, astrocytes of the central nervous system (CNS) become reactive astrocytes, and play the main role of glial scar formation. The scar is a major obstacle to r...

متن کامل

A Comparison between Therapeutic Effect of Granulocyte Colony-stimulating Factor and Methylprednisolone in Treatment of Patients with Acute Traumatic Spinal Cord Injury

Background & Aim: Spinal cord injury (SCI) is one of the worst kinds of traumatic injuries with remarkable social and economic effects on communities.  Methods & Materials/Patients: In this prospective randomized clinical trial, 122 patients with traumatic spinal cord injury were admitted to Poursina hospital within 48 hours of injury to compare granulocyte colony stimulating factor (G-...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017